Frames /sing

kvond

Tag Archives: Letter 32

Instrumentality and Perception in the Seventeeth Century

Overview

Just to jot down a few thoughts and co-incidences that are coming together in regards to my article. These are born from a discussion I had with my wife this afternoon as I sought to renew my focus, and to differentiate between her synthesis of ideas and mine is not easy, nor even necessary. There is something of interest, from the grandest of historical perspectives, in correlating several aspects of the rise of instumentalized thought during the Golden Age. For instance there is the instrumentalization represented by Descartes’ substantial divorce of the Mind and Body, and the attendant mechanized view of phenomena which showed the way for a love of the complex, automated device. On the other hand, there is the mechanized view of produced efficiency that inspired the slave trade just at this time, driving the shift from indentured and sharecropped plans of sugar production (as harsh as they were) toward an imparitiave “progress”: the wholesale import of enslaved African human labor. To put it a bit more precisely, there is something to the kind of vision that was well-appraised in the Cartesian, hyperbolic model, which allows the narrowness of focus on local causal relations, abstracted to calculable laws, which through its valuation alone redeems any particular efficiency, solely due to its distinctness and clarity, a model that bespeaks the horrors of enslaved human beings.

There is something to the rise of the lens and the desire to see more and more clearly, in a blinkered sense, that grants priority to narrow focus. And I believe that it was in this that Spinoza found his greatest objection to automated, instrumentalized productions. Perhaps like our discovered or invented esteem for HDTV, the clearer the better, Spinoza seemed to lack an enthrallment to the “device” as a mere medium of truth. Despite the fact, or even because of it, that he was a grinder of real lenses and a philosopher of the “clear and distinct”, he was much more sensitive to the joining points between human beings and their actions, in particular to the kinds of ideas that were held by persons. One does not simply see better because one sees further, or more minutely. If we take Descartes’ much esteemed and persued mono-axial hyperbolic lens, and turn in analogy to, for instance, the discovered efficiency of West Indies sugar trade through slavery, yes one could say with clarity, “We are producing sugar better”, in the tunnel-vision of clarity for clarity’s sake, but still not see the consequences, the poly-axial realities of the kinds of production we are truly enforcing. There is something to Spinoza’s resistence to the polished mechanism (letter 32) – an uncraftsmanlike transfer of mathematics to form through measure and mechanism, which works with a kind of transcendental force, the device becoming invisible and unconscious – which Spinoza would collapse. He draws our attention both to the flesh-hand that rests on the mechanism itself, but also to the Ideas held by users, ideas which he argues determine the degree of power and perfection of the human actors and their assemblage with their instruments. There is something about Spinoza’s metaphysical reconsilation of the split between Mind and Body – that Descartes had only a few decades before cleaved in the name of a doctrine of a transcendent God, and a Freedom of Will – and Spinoza’s material concern with lenses, light, lathes and glass, which points forth an alternate path or conception, a turn from the sheer instrumentality of either gears or humans. At the very least, a calculation, for Spinoza, must be seen as an act, the mathematical point, as a relation and expression, and an instantiation, a persistence. The criticism Spinoza would have is epistemic. That is, one is always seeing-with, and seeing-with is a communication of parts. If this study of lenses teaches a lesson to me, it would be that the radii of causes, comprehensively taken, are the finer part of seeing, and one only takes the hand off the process, knowingly. There is a certain ecology of perception that Spinoza’s observations on the eve of the Instrument define.

 

Some related posts: Some Observations on Spinoza’s Sight, A Diversity of Sight: Descartes vs. Spinoza, Spinoza the Merchant: The Canary Islands, Sugar and Diamonds and Leprosy

Advertisements

Some Rough Thoughts On Spinoza and Technology

The Free Hand

Christiaan Huygens's assited lens mechanism

Today, in contemplating Spinoza’s objection to Huygens’s semi-automated lens-grinding lathe (from Letter 32), and considering what it might mean for an overall Spinoza view of technology, I am struck by an immediate incongruity. Christiaan Huygens’s love of the mechanical, that is the ambition for the nearly direct implementation of the math to the material, through the correct devising of a means of transfer, seems to embody much that Spinoza would agree with. That is, both are determinative mechanists, and the proper construction of a mechanism would seem to be paramount in both thinkers view of how a lens should be ground. For one could say without too much occlusion, Spinoza thinks of the world being made up of two things: information (what he calls “Idea”), and matter (what he calls “extension”). The direct transfer of information to matter that technology seems to promise would seem to be exactly that Spinoza would favor.

But instead Spinoza baulks at the notion that the “free hand” of the craftsman should be removed from the process:

..what tho’ thusly he will have accomplished I don’t know, nor, to admit a truth, strongly do I desire to know. For me, as is said, experience has taught that with spherical pans, being polished by a free hand is safer and better than any machine (Letter 32).

One has to ask, is this just a technician’s sobriety, a conservative, “let’s see what it can do before we get too excited”? It seems not, for he really is not at all enthused to even find out. There seems a much more rooted objection, a tugging away from the simple connection between Idea (information) and Thing, that technology embodies. It is strange, because the minimization of the anthropological that Spinoza’s philosophy is most notable for comes right up against another principle, perhaps something we can call the principle of implementation. For Spinoza, because all technology is in combination with human beings, and its use a part of the human perception of the world and itself, in order for any technological process to be assessed, ALL elements of its assembled mechanism, including those of the state of the human beings involved, have to be considered. Because human beings do not form a “kingdom within a kingdom,” any device must be considered within the causal matrix of ideas and matter than make up its users and its practitioners. At least that is what I have come to believe Spinoza is thinking about, as he expresses reluctanceto remove the “free hand” from the process of crafting lenses. He is not against such a handless construction, but one senses that he is hesitant, holding in his view a greater scope of the issue at hand. For the 17th century desire to remove the craftman is not simply the desire to remove the “human error” from a process, but also is a labor calculation, suggestive of the Capitalist forms that were on the rise. The “free hand” question, is the question of interface, of communicative dialogue between the mechanism of gears and wheels and the mechanism of the human person (and community).

In a sense, what is at stake is the full consideration of interface. The impress of an idea (information) upon matter is a condition-dependent relation. One cannot simply press any kind of material into a spinning grinding mould to produce a lens. The specifics of the states of each must be appreciated. In this same sense there is a temporality, a historicity, to the transfer of ideas, one that Spinoza weighs as he wrote his first “rule for living” in the Emendation:

1. To speak to the understanding of the multitude and to engage in all those activities that do not hinder the attainment of our aim. For we can gain no little advantage from the multitude, provided that we accomodate ourselves as far as possible to their level of understanding. Furthermore, in this way they will give a more favorable hearing of truth.

His rule is to speak to the multitude, yet he will learn to not publish his Theological-Political Treatise in Dutch, keeping it from the multitude. Right away a differential comes apparent. The accomodation is really a measurement, a measurement that not only must be done with reason, but within the melieu of imaginary constructions and affective affinities. Perhaps this is why Spinoza is removed from the direct seduction of mechanical transfer. This is a finesse of his monist metaphysics. The transfer of ideas (information) to form, is never actually a transfer at all, but must be seen as an unfolding of two parallel Attributes. There is no descent into matter. Here Descartes and Spinoza radically diverge. Spinoza’s immanence becomes a line of permutation. The human element indeed has no hierarchical privilege in his Universe. It is shot through with error, but removing the human hand does not necessarily increase the power of an instrumental relation. This conceptualization of the human hand as a hand of error, of the craftsman as the ignorant purveyor unreflectant and unmodern traditions, a drag on the transcendent rise of Reason, is – I think Spinoza would say – an imaginary relation. For a machine to work properly, the free hand must always be located, and gauged.

This comes in view of past thoughts on this issue:

To Understand Spinoza’s Letter 32 to Oldenburg

Spinoza’s Comments on Huygens’s Progress

Descartes and Spinoza: Craft and Reason and The Hand of De Beaune

Some Reflections on Letter 32

Descartes in 1640 reports to Constantijn Huygens, “You might think that I am saddened by this, but in fact I am proud that the hands of the best craftsman do not extend as far as my reasoning” (trans. Gaukroger). And as Graham Burnett translates, “Do you think I am sad? I swear to you that on the contrary, I discern, in the very failure of the hands of the best workers, just how far my reasoning has reached” (Descartes and the Hyperbolic Quest, 70).

The occasion is the wounding of the young, brilliant craftsman Florimond De Beaune on a sharp piece of glass, as he was working to accomplish the automated grinding of a lens in a hyperbolic shape on a machine approximating Descartes’ design from La Dioptrique. This at the behest of Descartes himself:

His wound to the hand was so severe that nearly a year later De Beaune could not continue with the project, a project he would not take up again. Descartes’ craftsmanless, all-turning machine could not be achieved. It is as if its “reason” had chewed up even the best of earth’s craftsman.

Compare this to Spinoza’s comment on Christiaan Huygen’s own semi-automated machine, in letter 32 to Oldenburg. (One wonders if he may even had had a now infamous injury to De Beaune in mind.) Descartes seems to write callously to Christiaan’s father in 1640 [following Gaukroger’s citation], 25 years later Spinoza writes soberly about the machine of the son:

…what tho’ thusly he will have accomplished I don’t know, nor, to admit a truth, strongly do I desire to know. For me, as is said, experience has taught that with spherical pans, being polished by a free hand is more sure [tutius] and better than any machine.

Issues of class play heavily into any attempt to synthesize the rationality of a mechanism with the physical hands [and technical expertise] of the required craftsman to build it. What comes to mind for me is the same Constantijn’s Huygens enthused reaction to the baseness of the youths Rembrandt and Lievens in 1629, when he discovered their genius. As Charles Mee relates and quotes:

Unable to have Rubens, Huygens evidently decided to make his own Rubens, and he saw the raw material in Leivens and Rembrandt. He loved the fact that this “noble pair of Leiden youths” came from such lowly parentage (a rich miller was still a miller after all): “no stronger argument can be given against nobility being a matter of blood” (Huygens himself had no noble blood). And the fact of their birth made the two young men all the more claylike, so much more likely to be shaped by a skilled hand. “When I look at the teachers these boys had, I discover that these men are barely above the good repute of common people. They were the sort that were available for a low fee; namely with the slender means of their parents” (Rembrandt’s Portrait ). 

The standing of the rising Regent riche had to position itself between any essentialist noble quality of blood, and the now stirring lower merchant and artisan classes, whose currencied freedoms in trade and mobility were testing ideological Calvinist limits. Leveraging itself as best it could on rational and natural philosophy, a philosopher-scientist-statesman was pursuing a stake in freedom and power, one that rested on the accuracy of his products. In this way it seems that Descartes’ – feigned? – glee over De Beaune’s injury, insofar as it embodied a superhuman outstripping of remedial others, manifests this political distancing to a sure degree. De Beaune was no ignorant worker, for his high knowledge of mathematics made him much more “technician” than craftsman, (in fact de Beaune had proposed the mathematical problem of inverse tangents which Descartes would not be clear on how to solve (letter, Feb 20 1639), and it was his Notes brièves and algebraic essays which would make Latin editions of Descartes Géométrie much more understandable to readers). Reason and rationality could in the abstract certainly in some sense free even the most economically and culturally base kinds (at least those with a disposition to genius), but in fact savants likely imagined that their lone feats of Reason actually distanced themselves from the “hands and limbs” on which they often relied.

Seen in this way, Spinoza’s sober view of Christiaan Huygens machine perhaps embodies something more than a pessimism of design, but rather more is a reading of the very process of liberation which technological development represented for a class of thinkers such as Leibniz or the Huygenses. The liberation of accuracy and clarity was indeed a cherished path, but perhaps because Spinoza was a Jewish merchant’s son, excommunicated, because Spinoza understood personally the position of an elite [his father had standing], within a community itself ostracized though growing with wealth, a double bind which he relinquished purposively, any clarity was necessarily a clarity which connected and liberated all that it touched. It was inconceivable to have dreamed a rationality so clear that it would distance itself from the the hands that were to manifest it. Perhaps Spinoza keeps in his mind the hand of De Beaune.

To Understand Spinoza’s Letter 32 to Oldenburg

It is November of 1665, and Spinoza has just that summer likely spent much time in communication and possible visitation with the esteemed Christiaan Huygens, whose estate is a mere 5 minutes walk from where he lives. The two of them are ensconced in the quiet village of Voorburg, but it was a summer in which plague was ravaging London at a rate of nearly 6000 a week, and the secretary of the Royal Society of England, Oldenburg, has begged Spinoza for an update on the discoveries and devices of Huygens, as if upon such innovations the figurative health of society depends.

Spinoza responds with some telling remarks, upon which I have already registered some thoughts: Spinoza’s Comments on Huygens’s Progress. Here though, I want to post some relevant illustrations from Huygens’s notebooks, which make much more clear just what Spinoza may find objection to in Huygens’s fabrica. What Spinoza writes is this:

The said Huygens has been a totally occupied man, and so he is, with polishing glass dioptrics; to that end a workshop he has outfitted, and in it he is able to “turn” pans – as is said, it’s certainly polished – what tho’ thusly he will have accomplished I don’t know, nor, to admit a truth, strongly do I desire to know. For me, as is said, experience has taught that with spherical pans, being polished by a free hand is safer and better than any machine.

(This was the summer that Huygens will have solved the issue of spherical aberration using a solely combination of spherical lenses. But Spinoza does not know this.) We can assume that Spinoza has seen the machine that Huygens is fast at using. In order to see with Spinoza what this machine likely entailed, one must turn to several illustrations. Since the 1650s Huygens had experimented with (and likely used) an assisted means of steadying the glass blank against the spinning metal grinding form. The nature of this technical strategy was a long “bâton” which would restrict the kinds of movements the blank was capable of:

This is a detail of the device, followed by the wide view:

Oeuvres Complètes, XVII (p.300)

Oeuvres Complètes, XVII (p.299)

As one might see, the glass blank can toggle to a degree. This is what professor Graham Burnett writes of it in his Descartes and the Hyperbolic Quest: Lens Making Machines and Their Significance in the Seventeenth Century:

In the late 1650s, [Huygens] outlined the improved “bâton” technique for handling the lens in the forming pan [above illustrations cited]. Previously, the lens blank had been afixed by means of pitch or rosin to a short wooden or stone handle called a mollette. This short handle and wide distribution could lead to a rocking of the blank as it guided over the form, resulting in distortions of shape. Huygens’s improvement made use of an iron pin which acted as a bearing in the center of a piece of wood sitting over the glass. The pin was affixed to a wooden shaft that was suspended from above. This arrangement did not necessitate the use of pitch to attach the lens, and thus avoided fouling the abrasive with fragments of rosin. The technique must have worked well, because Huygens referred to using it into the early 1660s and even dedicated to it several pages in his extensive De Vitris Figurandis…representing work done in the 1670s and 1680s (97 – 98 )

Whatever the fabrica that Spinoza saw and commented on, it most surely employed something of the bâton mechanism. And it is likely that it is at least in part this that Spinoza is commenting on when he says: “experience has taught that with spherical pans, being polished by a free hand is safer and better than any machine”. But the automated potential of Huygens’s machine exceeds this semi-assisted mechanism, for there is a long history of Huygens’s conceptual experimentation with a fully automated device which would both hold the glass blank, but also turn and grind it. In these the glass blank and the forming pan apparently spun against each other in opposing directions. Here are several of these prospective machines:

Oeuvres Complètes, XVII (p.303)

 Oeuvres Complètes, XVII (p.304)

As Graham Burnett describes:

They are gear- and belt- driven, imparting both rotary and epicyclic motion to the glass blank, and they are all represented as self-contained boxes out of which lenses would emerge more or less by the turn of the crank. In fact in [the figure from page 303 of OC], it appears that the crank itself was forgotten and had to be added as an afterthought – a pentimento that speaks volumes concerning the preoccupation with excessive of the process (98 )

Burnett’s global point, if I read him right, is that Huygens’ plans for a completely mechanized production of mathematically exact lenses, purged from the human errors of the craftsman, is in the heritage of Descartes own, highly unrealistic schemata for a hyperbolic lens-grinding machine, symptomatic perhaps of a tendency to divorce body from mind. Burnett is quick to point out that Huygens, unlike Descartes, had extensive experience both in grinding lenses, and using them for discovery (for instance his discovery of the moon and rings of Saturn in 1656 is epic), yet the overall point of this tendency in conception holds. And likely it is to this that Spinoza is in some degree responding.

To better conceive of the contrast between whatever state the Huygens machine may have exhibited (in this spectrum of automatizations), and the simple lathe Spinoza may have employed, a juxtaposition of one of Huygens’s drawings a reproduction of a possible Spinoza lathe will serve:

 

 Oeuvres Complètes, XVII (p.302)

From the Middelburg 400th Anniversary of the Telescope Exhibit, design from Manzini’s “L’occhiale all’occhio, dioptrica pratica”  (1660), circa 1614.

From Manzini

One can immediately see the kind of condensed block mechanism that Huygens would like to have built, and to some degree had built, and the kind of traditional lathe that Spinoza may have used. In fact I have come to strongly suspect that in addition to the simple hand driven lathe depicted above, he likely also used a spring-pole lathe (such as the one in the Rijnsburg museum [here], though this museum piece is not of the period, nor a lens grinding lathe), most likely of the kind Hevelius used (pictured below) the hypothesis discussed here:

Spinoza’s lathe emphasized personal skill, the sensitive hand-eye-machine interface that drew not only on experience and a patient, attentive eye, but also on the particular passed on abrasive recipes and techniques of individual masters. Huygens’s ambition, as was Descartes’ was to transcend the event of crafting, mathematically. That is, with a mathematics that was embodied by the mechanism itself he hoped to simply machine the accuracy. Spinoza’s doubts to whatever fabrica he saw at the Huygens Estate were doubts about removing the “free hand” from the technology. And there is something to this that goes beyond whether this machine or that is at any one moment in history the better machine.

Speculatively: What Spinoza has in mind with the “free hand” is that the human element must be included in any epistemological assemblage. He would no more refuse the mechanized advances in contemporary technology than he would refuse more and more adequate ideas, but he would still look for the “free hand”, the touching point that circulates that knowledge back down to the user, and other men. Technical knowledge still must be human knowledge. The causes of things related to the causes of men. This is what I believe he meant by the fourth stimulation of the “means necessary to attain our end” in the Emendation of the Intellect:

4. To compare this result [the extent to which things can and cannot be acted upon] with the nature and power of man.

There is no doubt that Huygens was on the right track. His mentality was to lead him to a wave theory of light to complement Newton’s spectrum discoveries of the same. In fact, Huygens’s scientific discoveries and inventions are prodigious for the age, but it is good to note that Spinoza in the year of 1665 was fairly close to Huygens, and in many ways Spinoza’s optical and practical knowledge circulated with that of Huygens. That latter would affirm as late as 1668 that Spinoza was in fact right all along about the superiority of small objectives in microscopes, and had marveled at the lens polish that Spinoza was able to achieve through rather craftsman-like means. In reading the objection that Spinoza makes to Huygens’ machine one should understand it at two levels. The first is simply the pragmatic matter of an experienced craftsman who is not intoxicated by technical marvels in their own right. The turning of shiny gears does not make his heart sing. Taking his hand off the lens seems to him one of the last things one would want to do, and it would take a striking result to convince him otherwise, a result which Huygens would not be able to provide. The second level is as vast as the first is earthbound. Spinoza’s notion is that no matter how intricate the device (or the mathematical figure), the meaning of its products, the degrees to which their ideas set us free or not, must relate back to the human being itself, as it finds itself in history. In a sense, Spinoza is looking microscopically beneath, and macroscopically beyond Huygens’s improvements in his letter 32, as a craftsman and a metaphysican.

Some Personal Thoughts on a Possible Spinoza Lathe

Some discussion has been going on over at the Practical Machinist forum, where I have sought any views about the real world workings of any of the devices Spinoza may have used at grind lenses. I have come to the thought that it might very well be a rather simple device that Spinoza used, not much differnt than the one Manzini depicts for the start of the 17th century:

In response to my query someone was kind enough to relate some of his own, unique experiences with a machine not unlike the one illustrated. I post them here because they serve to vivify the elementary nature of these technical movements, in the manner of which a 20th century workman and a 17th century philosopher might share an experience of material and design effects.

Joe writes:

When I was in my 20s I worked for a couple of years at the Peerless Optical Co in Providence, Rhode Island, making lenses for glasses. While much of the work was automated to a degree there was still a little corner of the shop where very special lenses were ground. Because I was actually interested in the work, that became my department.

The lenses were ground against iron forms, called “laps” (either convex or concave) using a variety of progressively finer abrasives. The final polish was achieved by gluing a thick disc of felt to the lap and using a much finer polishing media. The lap spun in a bucket-like contraption that worked very much like a potters wheel. The lens was kept in contact with the lap by means of a hinged arm with an adjustable pin. The arm was held in place with the left hand, the pin pushing against the lens, while you added abrasive to the lap with the right hand. To secure the lens without damaging it, a small flat piece of metal with a center hole was “glued” to it using thick green pitch, exactly like the “sealing wax” used before the invention of gummed envelopes. We melted the pitch onto the lens with a bunsen burner. It was removed by chilling the whole piece, at which point the pitch would harden and fall off the glass.
Other than the motor that spun the lap, there isn’t a thing about this whole process that any 17th century mechanic would find surprising. Also, with particularly difficult lenses, I would have to forgo the hinged arm and hold the lens against the lap with my hand.

In our case, a special purpose-built machine re-cut the laps when they wore…I had a beautiful engraved set of brass gauges which I used to check them (by holding the gauge and lap up to a window) and which must have been 100 years old or more when I was using them. I can see where a lathe of some sort would be essential for making the laps, a primative lathe would suffice, but I can’t see it being used to actually make the lens itself.

The machine illustrated in the post above this one is very much like what I am describing. In fact, other than the hand operation it would be instantly recognizable to anyone who was making lenses in the manner I was. I actually made a couple of lenses for an antique telescope on this equipment…they worked perfectly.

In coincidence to this, Rijk-Jan Koppejan sent me a photograph of a reproduction of just this illustrated device, built by his team and part of their exposition on the invention of the telescope, organized around the 400th year Middelburg anniversary. There is to be a symposium of speakers in September, which I just may have to find a way of attending. He says he may be able to take new, more revealing photographs and send them. I will post them as he might.

Joe mentions that the curvature of this grinding “dish” may be too extreme, but that Manzini’s illustrator may not have thought this a significant factor (also, we cannot see the internal curavature of the reproduction). I don’t know enough about the optics of the time to comment.

He mentions as few more interesting details of his memory of lens grinding with such a lathe, in particular the method he had to use to correct the wear on the “laps” (as he calls them) – Spinoza calls them patinas or scutellae, plates or dishes – and thoughts about processes by which a spherical lens is checked for its optical quality:

I suspect that the drawback to using male/female laps against each other is that both pieces will wear. I am guessing that if the lens maker had a set of gages like I used, which are simply used to check the curve, the lap could be spun in any lathe-like machine and the surface selectively filed or ground to return it to true. As I’ve said, I held the lap and the gage up to a window and looked for a streak of light between them…a very accurate way of measuring once you have some practice and know what to look for.

…Another memory just came back…I think that the felt was attached to the lap with fish or hide glue. The lens was checked by holding it up to a light bulb with a single filiment. You held it in such a way that the light from the filiment reflected off the surface. If there were no breaks or nicks in the reflection, the lens was perfectly true. This could also be done by stretching a hair across a window and picking up the shadow. You could never see the imperfections with the naked eye..

…The lens was finished in what we called an “edger” which was nothing more than a lathe-like spindle that gripped the little metal piece glued to the lens and spun it against a grinding wheel. These were not the modern clay-based wheels but slow turning natural stone wheels that ran in water, the grinding wheel turning one way and the lens in the opposite direction. In this way the outer edge was gradually reduced in a manner perfectly concentric with the optical center. Even if the metal attachment was slightly off center on the original lump of glass, this process insured that it would be perfectly concentric when finished. You could only remove the metal piece after this was done and you could not replace it perfectly so it was a once-chance-only affair.

Althought at this point it is only a collective intution that Spinoza did not use a large, spring-pole lathe such as the one shown at the Rijnsburg, there are some facts that lead to me this thought. First is that when Huygens writes of the superior polish of Spinoza’s lenses, he describes them as “little lenses”:

“the Jew of Voorburg finishes his little lenses by means of the instrument and this renders them very excellent” (Complete Works, 6:155).

I do not have the original word from which “instrument” is translated, but at least at this point it strikes me that this is a small device. And these lenses are small. I am unsure if Huygens is talking about telescope lenses or microscope lenses, but there is the implication of very fine work. This also coincides with Spinoza’s own light criticism of Huygens’ very complex machine, in letter 32 to Oldenburg. (See some of my thoughts on this here.) It is of course possible that Spinoza had a spring-pole lathe much like the Rijnsburg and Hevelius lathes, but the contrast between his own approaches and Huygens’s seems more at home with a simpler device. There are other factors that cause me to think that this is so, but for now this is enough to discuss.