Frames /sing


Tag Archives: “cones of rays”

An origin of Spinoza’s “cones of rays” explanation, Letter 40

[addendum: in addition to these thoughts, the influence of a more recent source, James Gregory’s Optica Promota (1663) has to be considered]

Kepler and How Spinoza Viewed the Eye and Light

As a point of reference it is important to locate the origin of Spinoza’s phrase “cones of rays” found in his letter 40, since implicit in this phrase is likely the conception of light and refraction which would help us make sense of his objection to Descartes. This phrase has a history of what seems a bit of interpretive confusion, for instance, that expressed by Alan Gabbey in his Cambridge Companion to Spinoza article, “Spinoza’s Natural Science and Methodology”. Here professor Gabbey quotes the phrase as if it embodies the locus of Spinoza’s befuddlement:

Spinoza explained that light rays from a relatively distant object are in fact only approximently parallel, since they arrive as “cones of rays” from different points on the object. Yet he maintains the same property of the circle in the case of ray cones, apparently unaware of the importance of the “[other] figures” [the famous “Ovals of Descartes”] that Descartes had constructed in Book 2 of La Géométrie to provide a general solution to the problem of spherical aberration [Ep 40].

I have already pointed out that Spinoza indeed was not “unaware” of the “importance” of Descartes’ figures (since he was intimate with the debate over that importance), and that part of Gabbey’s difficulty may stem from a weakness in translation, or not taking into account Spinoza’s familiarity with Hudde’s Specilla circularia: here. Spinoza, all the same, is constructing an argument that seems to shift parameters. In Letter 39 he speaks of the capacity of spherical lenses to focus parallel rays to an (approximate) point of focus opposite, along an infinity of axes, and now he tells Jelles that this capacity is to be understood not for parallel rays, but for “cones of rays”, which is more accurate to what is actually occurring. Where does Spinoza get his conception of “cones of rays”?

I believe it is found in Kepler’s Paralipomena to  Witelo (1604), a work I am beginning to suspect holds some of Spinoza’s resistance to Descartes. Descartes called Kepler his “first teacher” in optics, so when there is a divergence between the two, Kepler and Descartes, one may perhaps look to Kepler as a source for other resistance to Descartes’ conclusions. (It is a mistake to assume that solely in terms of temporal advancement, all of Descartes deviations from Kepler are corrections, for in some ways Kepler held views antecedent to our better conceptions on the nature of light.) In letters 39 and 40 Spinoza is critiquing Descartes explanation of how image size is produced in telescopes, and he finds in Descartes’ explanation some delinquencies which give undue favor to the hyperbola. Where Spinoza likely draws his conception of “cones of rays” is where Kepler is discussing the manner in which images are formed in the human eye:

Now in order to approach closer to the way this picturing happens, and to prepare myself gradually for the demonstration, I say that this picturing consists of as many pairs of cones as there are points in an object seen, the pairs always being on the same base, the breadth of the crystalline humor, or making use of a small part of it, so that one of the cones is set up with its vertex at the point seen and its base at the crystalline (though it is altered somewhat by refraction in entering the cornea), the other, with the base at the crystalline, common with the former, the vertex at some point of the picture, reaches to the surface of the retina, this too undergoing refraction in departing from the crystalline. And all the outside cones come together at the opening of the uvea [pupil], at which space the intersection of the cones takes place, and right becomes left..

…[now speaking of a single cone of those cones of rays] Thus those rays which previously were spreading out in their progress through the air, are gathered together now that they have encountered in to the cornea, so much so that any great circle described by those rays upon the cornea, which in their decent touch the edges of the opening is wider than the circle of the opening of the uvea; however, these rays, all the way to the opening of the uvea, are so strongly gathered together through such a small depth of the aqueous humor, that now the edges of that opening are trimmed of by the extremes, and by that decent they have made illuminous a portion on the surface of the crystalline humor, if indeed they all have first arisen at a point at a certain and proportionate distance (which is pecular to each eye, and not just the same for all), they fall approximately perpendicularly, because of the similar convexity of the cornea and the crystalline humor. (trans. Donahoe, 170)  

Included in this reference is also the obvious fact that for an object to be seen, light from all its points must be gathered. It is part of Kepler’s picture:

Spinoza writes: “…in order to see an entire object, we need not only rays coming from a single point but also all the other rays that come from all the other points. And therefore it is also necessary that, on passing through the glass, they should come together in as many other foci.”

Because Spinoza is arguing that the hyperbolic lens – designed to receive rays solely parallel to its one axis – is insufficient for the variety of angles at which light arrives, the question of parallel or coned rays does not seem germane to his argument. His emphasis in the original description seems meant to be in terms of axes, assuming a “mechanical point” of focus definition. (Whether it is ultimately germane to contemporary telescope construction is another question.)

It must be noted, though here is both a most significant implication of the cone of light having a spherical (wave?)front, something ungrasped by Descartes but captured later by Huygens, in the text that follows as Kepler closely describes this action of cones of rays in the eye, he emphasizes the “hyperbolic posterior surface of the crystalline” (171), possibly disturbing the cohesion of Spinoza’s purely spherical ideal of light refraction. If indeed Spinoza is taking Kepler’s description as his source, this gives us to consider how Spinoza might mean the inexactness of the construction of the eye (letter 40). In what way can the eye be considered imperfect, and is there a Kepler source for this notion?

Spinoza writes: “And although the eye is not so exactly constructed that all the rays coming from different points of an object come together in just so many foci at the back of the eye, yet it is certain that the figures that can bring this about are to be preferred above all others.”

There is an antecedent to this in Keplers’ description of the action of rays as they come from cones at angles oblique to the axis of the cornea:

All the lines of the direct cone [a cone whose axis is the same as the axis of the cornea and crystalline] are approximately perpendicular to the crystalline, none of those of the oblique cones are, The direct cone is cut equally by the anterior surface of the crystalline; the oblique cones are cut very unequally, because where the anterior surface of the crystalline is more inclined [aspherical], it cuts the oblique cone more deeply. The direct cone cuts the hyberbolic surface of the crystalline, or the boss, circularly and equally; the oblique cone cuts its unequally. All the rays of the direct cone are gathered together at one point in the retina, which is the chief thing in the process; the lines of the oblique cones cannot quite be gathered together, because of the causes previously mentioned here, as a result, the picture is more confused. The direct cone aims the middle ray at center of the retina; the oblique cones aim the rays to the side

…so the sides of the retina use their measure of sense not for its own sake, but whatever they can do they carry over to the perfection of the direct vision. That is we see an object perfectly when at last we perceive it with all the surroundings of the hemisphere. On this account, oblique vision is least satisfying to the soul, but only invites one to turn the eyes thither so that they may be seen directly (174). 

Here Kepler seems to be making the exact same point as Spinoza, with an additional hint towards the necessity of the oblique in Spinoza’s concern. The construction of the eye, in so far as its lenses are aspherical, it is retarded its capacity to handle the focus of cones of rays oblique to its single axis. This first calls our attention to the limits of human vision (in individuals and in plan), and then suggests that Spinoza’s point is one of practical application in terms of lenses: that in aiding human vision and constructing telescopes, the symmetry of spherical lenses is preferred for magnification, handling a greater variety of angles of incidence through its infinity of axes.

This does not of course establish the veracity of Spinoza’s argument, but in locating a likely origin for Spinoza’s conception, we at least place Spinoza’s argument within the context of a larger view, to be weighed with all other anti-hyperbolic (Cartesian) positions  of his day (Hudde, Huygens). As I have said, it is my sense that Spinoza derives more than this from Kepler’s account of light. More posts to follow.