Frames /sing

kvond

Tag Archives: Alan Gabbey

The “Corporeal Equation” of 1:3: What Makes A Body for Spinoza?

If a Body Catch a Body Comin’ Through the Rye

I have always been fascinated by Spinoza’s defintion of a body as found in the Second Part of the Ethics. Not because it reflected some proto-physics, but because it allowed a radical revisioning of what defined boundaries between persons, and between persons and things. What seems implicit in such a definition is that something of a cybernetic recusivity surrounds and defines any isolated “part” of the Universe, yet, a recursivity that only comes clear by taking a perspective. One understands that really for Spinoza the entire Universe composes a single such body.

Here is Spinoza’s famous Ethics  defintion, and an even more elementary and bold one from his much earlier Short Treatise on God, Man and His Well-Being (KV)

Ethics: When a number of bodies of the same or different magnitude form close contact with one another through the pressure of other bodies upon them, or if they are moving at the same or different rates of speed so as to preserve an unvarying relation of movement among themselves, these bodies are said to be united with one another and all together to form one body or individual thing, which is distinguished from other things through this union of bodies (E2p13a2d)

KV: Every particular corporeal thing [lichaamelijk ding] is nothing other than a certain ratio [zeekere proportie] of motion and rest.

Yet, such a vision for Spinoza is more than an instructive imaginary relation, it indeed is a proto-physics, a concrete real which must be accepted as such. There is a certain sense in which Spinoza’s conception of a body must be reconciled with the “facts” of contempory physics if we are to geta stronger impression of the truth of his metaphysics and psychology. As Spinoza wrote to Blyenbergh, “Ethics, … as everyone knows, ought to be based on metaphysics and physics” (Ep 38). At a general level, in Spinoza’s own terms, if his physics is radically wrong this may pose serious doubts as to his Ethics (an entirely rationalist reading of his philosophy notwithstanding). And concordantly, one might assume, new information in physics could have a rippling effect across his philosophy and Ethics.

It is not my aim here to explore these wider meta-questions, but rather to for a moment pause upon a change in my own thinking. I had always taken Spinoza’s above defintions just as I explained, fantastic frameworks for revisioning the world as it common-sensically and historically has come down to us, intellectual opportunities for instance to see the connections between bodies in a Batesonian or an Autopoietic sense. This still remains. But I came to realize that when Spinoza is thinking about a “certain ratio” (as Shirley translates) or a “fixed manner” (Curley), he is thinking of something quite quantifiable, something numeric. I had of course loosely thought that this was the case, but until recently I had never strictly thought about it.

Spinoza’s Objection

There is an interesting, rather provocative point in Spinoza’s letters to Oldenburg, as he is reporting back to this Secretary of the Royal Society on the progress of his brilliant neighbor Christiaan Huygens. It seems apparent from what Spinoza reports that he has had intermittent, but somewhat substantive discussions on not only optics and lens-grinding, but also on physics. Huygens, by what history tells, had corrected Descartes’ rules of motion, and done so through experiment. Huygens was quite interested in the rules of motion for he had invented the pendulum clock way back in 1656 (the same year he had discovered the rings and a moon of Saturn), and for a decade was focused on improving it. Spinoza reports back to Oldenburg Huygens’ disagreement with Descartes, but tantalizingly also speaks of his own disagreement, in particular, with the sixth rule of motion:

Spinoza: “It is quite a long time since he [Huygens] began to boast that his calculations had shown that the rules of motion and the laws of nature are very different from those given by Descartes, and that those of Descartes are almost all wrong…I know that about a year ago he told me that all his discoveries made by calculation regarding motion he had since found verified by experiment in England. This I can hardly believe, and I think that regarding the sixth rule of Motion in Descartes, both he and Descartes are quite in error.” (Letter 30A)

Oldenburg: “When you speak of Huygens’ Treatise on Motion, you imply that Descartes’ Rules of motion are nearly all wrong. I do not have to hand the little book which you published some time ago on ‘Descartes’ Principia demonstrated in geometrical fashion’. I cannot remember whether you there point out that error, or whether you followed Descartes closely to gratify others.” (Letter 31)

Spinoza: “As to what you say about my hinting that the Cartesian Rules of motion are nearly all wrong, if I remember correctly I said that Mr. Huygens thinks so, and I did not assert that any of the Rules were wrong accept the sixth, regarding which I said I thought that Mr. Huygens too was in error.” (Letter 32)

Many commentators have not been able to make much headway when interpreting Spinoza’s objection to Descartes sixth rule of motion, for at the very least, it seems woven to his other rules, and the objection should have spread far wider than this, as in the case with Huygens. Alan Gabbey (The Cambridge Companion ) for instance simply finds it nonsensical. And Lachterman in “The Physics of Spinoza’s Ethics”, really almost avoids the issue altogether. (Wim Klever has taken the question directly on in “Spinoza and Huyges: A Diversified Relationship Between Two Physicists”, tying it to a Cartesian difficulty in explaining cohension, while Rivaud finds what seems to be an untenable conceptual connection between speed and essence in his “La physique de Spinoza”.)

I certainly am not one here to solve the question, but it did get me thinking about how Spinoza conceived of a body, and what a “certain ratio” meant to him.

Descartes’ Sixth Rule of Motion and Spinoza’s Defintion of a Body in the Short Treatise

Below is the sixth rule of motion to which Spinoza found objection. It essentially describes what would ideally happen if two bodies of the same size, one in motion and one at rest, struck. Descartes suggests that if the moving body had four (4) degrees of speed before impact, after impact the ratio would be 1:3, with the body at rest taking on one (1) degree of speed, the bodies rebounding:

Descartes:51. Sixth rule.
Sixthly, if body C at rest were most accurately equal to body B moved toward it, it would be partly impelled by B and would partly repel it in the contrary direction. That is, if B were to approach C with four degrees of speed, it would communicate to C one degree and with the three remaining would be reflected in the opposite direction.

Huygens reportedly showed through experiments at the Royal Society that instead all the degrees of speed would be imparted to the body at rest, and the intially moving body would then be stopped, and it was to this, as well as to Descartes’ rule that Spinoza expressed an unspecified objection. But this is not the ultimate point here for me. I was rather struck by an early note on Spinoza’s defintion of a body found in the Short Treatise , which proposes the same ratio of 1:3 that Descartes used to illustrate his sixth rule, here below stated as the ratio of motion to rest, and not as “degrees of speed”:

Spinoza: Short Treatise, notes to the Preface to Part II:

12. As soon, then, as a body has and retains this proportion [a proportion of rest and motion which our body has], say e.g., of 1 to 3, then that soul and that body will be like ours now are, being indeed constantly subject to change, but none so great that it will exceed the limits of 1 to 3; though as much as it changes, so much does the soul always change….

…14. But when other bodies act so violently upon ours that the proportion of motion [to rest] cannot remain 1 to 3, that means death, and the annihilation of the Soul, since this is only an Idea, Knowledge, etc., of this body having this proportion of motion and rest.

What is striking to me is that such an elementary numerical value for the definition of a body would occur to Spinoza in this context. Alan Gabbey wants us to point out that this ratio of 1:3 is found in editorial notes, and my not even be of Spinoza’s hand, though I am unsure if Spinoza would have allowed such a strong example to slip through if it was alien to his thinking. Provocative is that the context for this proposed illustration of a “corporeal equation” (as Matheron has named it), of 1 to 3, is that it is the human body that is being discussed and not abstract solids such as those Descartes discusses in his physics. Even if Spinoza does not imagine that the human body might actually retain such an elementary 1:3 ratio of motion to rest, somewhere in his conception of the human body there is an affinity to such an simple math. One for instance would not be describing a super computer whose mark would be its complexity, and turn to such a number. It would appear that at least figuratively Spinoza at the time of the Short Treatise  thought of the human body as elementarily composed such that its conatus expressed a homeostasis that was comprehesible and simple. The numerical value of 1 to 3 held perhaps a rhetorical attraction.

By the time of Spinoza’s geometrical treatment of Descartes’ philosophy, the proposed illustrative values that Descartes included in his rules for motion are no longer there. Spinoza generalizes them apart from any particular equation. One could see in this perhaps already a distancing from some of Descartes’ assertions, and Oldenburg tells Spinoza that he looked over Spinoza’s exposition of Descartes to see signs of his disagreement, finding none.

What the sixth rule Meant for Spinoza

For my part, if we take Descartes’ sixth rule at face value, and imagine the interaction between two bodies of the same size, one at rest, one in motion, we get a glimpse into the kind of change Spinoza thinks makes a body. For once the supposed transfer of a degree of speed occurs, the two bodies are now in communication. As long as they are not interacted with by other bodies their ratio will remain 1:3, and they would be considered an “individual”. And if one of those bodies interacted with another body so as to change its speed, immediately one realizes that if the idea of a single body is to be preserved the definition of parts needs to be expanded so that the ratio is to be expanded across a host of interactions. One sees how the definition of a body as a body is entirely contingent upon how you calculate.

Wim Klever finds in Spinoza’s 1665 objection to Descartes’ sixth rule (made almost 4 years after the writing of the Short Treatise ) a testament to Spinoza’s thorough-going commitment to a physics of immanence. This could be. But one could also imagine the case that Spinoza had been caught up in a conversation with Huygens at the Hofwijck estate and was entirely caught off guard by Huygens’ sweeping dismissal of Cartesian physics, which up to that point had been a touchstone for most scientific thinking in Europe. Spinoza’s objection to the sixth rule may have only been a reaction, one that prudently and instinctively placed himself between Descartes and Huygens, on a single point, a point he could not elaborate on.

But what was it about Huygens’ correction to Descartes which may have also given Spinoza pause, especially if Descartes’ rule for the transfer of motion between two equal bodies, one moving, one at rest helped frame Spinoza’s general notion of what makes a body? Would it not be that there was a complete tranfer of motion from one to the other, that one stopped and the other started? Because Spinoza envisioned bodies moving together in community, and integrated communication of impinging interactions that could be analyzed either in terms of their recursive cohensions (for instance how the human body can be studied solely in terms of its own internal events, as one might say, immanent to their essence), or in terms of extrinsic interactions which “through the pressure of other bodies” cause these internal events, the intuitional notion that a body in motion would deliver all of its motion to another body at rest, and not be rebounded simply defied the over all picture of what Spinoza imagined was happening.

I suggest that somewhere in the genealogy of Spinoza’s thought about what defines a body he found Descartes sixth rule quite suggestive. The idea that two bodies which do not seem to be in communication, one moving, one unmoving, (an essential perceptual differential which allows us to distinguish one thing from another in the world), suddenly can appear in communication from the change they bring about in each other in collision, now departing at a ratio of speeds, helped Spinoza psychologically and causally define the concrete yet contingent composition of an individual. The corporeal equation of 1 to 3 standing in for the possibility of mathematical determination which could conceptually unite any two parts in a single body, given the right analysis.

But when Spinoza encountered Huygens’ thorough dispatch of Cartesian mechanics we can suspect that Spinoza came in contact with his own theoretical disatisfactions with Descartes. As we know, Spinoza was part of a small cadre of mathematicians and thinkers which found dissatisfaction with Descartes idealized optics, something that no doubt formed part of his discussions with fellow-lense grinding and instrument maker Christiaan Huygens. And too, Spinoza likely felt that though Descartes’ mechanics provided an excellent causal framework for rational explanations of the world, his determinations lacked experimental ground. It would seem to me that Spinoza’s objection to the sixth rule of motion poses something of a revelation into the indeterminancy of Spinoza’s physics. The sixth rule may have played a constructive role in his imagination of what a body must be, but in particular in view of Huygens’ confirmed rejection of the rule, it became simply insufficient. Spinoza’s physical conception of a body stands poised between a Cartesian rational framework of causal interaction and mechanism, which proves lacking in specifics, and the coming Newtonian mechanics of force. However, in such a fissure, one does have to place Spinoza’s notion of immanence.

Autopoiesis Comes?

Signficantly, and something which should not be missed, is that the definition from axiom 2 of proposition 13 of Part 2 above is not the only conclusive one that Spinoza provides in the Ethics. Lemma 4 under axiom 3 actually provides a view of the body which does not require that the parts themselves remain in a fixed ratio to each other. Rather, it is only the ratio itself that must be preserved:

If from a body, or an individual thing composed of a number of bodies, certain bodies are separated, and at the same time a like number of other bodies of the same nature take their place, the individual thing will retain its nature as before, without any change in its form [forma].

This allows us to see that by the time of his writing of the Ethics, Spinoza’s notion of ratio, the aim of his mechanics, is far from what Newton would develop. The causal histories traceable through interactions between bodies certainly were signficantly important for Spinoza, but it was the preservation of a mode of interaction which really concerned Spinoza’s focus. That all the bodies that compose and individual could conceivably be replaced, without that individual being considered as changed (as for instance we know of nearly every cell of the human body), is something that Newtonian physics would not enumerate. It is within this conception of preservation that I think Spinoza’s mechanical conceptions have to be framed, in the entirety of an effect between bodies, the cohesiveness of the modal expression.

One need only turn to something like Autopoietic theory (both those of life by Maturana and Varela, and suggestively of social forms by Luhmann) to see a lineage given from Spinoza’s Lemma 4 description:

The defintion of a living thing understood to be a self-producing machine:  “An autopoietic machine is a machine organized (defined as a unity) as a network of processes of production (transformation and destruction) of components which: (i) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produced them; and (ii) constitute it (the machine) as a concrete unity in space in which they (the components) exist by specifying the topological domain of its realization as such a network.” (Maturana, Varela, 1980, p. 78)

On the difference between “organization” and “structure”:  “…[I]n a toilet the organization of the system of water-level regulation consists in the relations between an apparatus capable of detecting the water level and another apparatus capable of stopping the inflow of water. The toilet unit embodies a mixed system of plastic and metal comprising a float and a bypass valve. This specific structure, however, could be modified by replacing the plastic with wood, without changing the fact that there would still be a toilet organization.”
(Maturana & Varela, 1987, p. 47)

Where Lies Spinoza’s Physics?

Spinoza’s immanent connection between physics and metaphysics in a turn toward a decisive ethics, is one in which any outright mechanics must be understood beyond simply A causes B, and the appropriately precise mathematical calculation of what results. If Spinoza’s physics (and even its relationship to Descartes who preceded him, and Newton who followed him) is to be understood, it is this recursive relationship between parts that has to be grasped, the way in which parts in communication can be analyzed in two ways, along a differential of events internal to a horizon, and events external to that horizon, interior and exterior, even with a view to the conceived totality. It seems that it is this replaceable nature of body-parts in composite that qualifies Spinoza’s physics as interpretively distinct, and what allows it to place within the domain of cause not only questions of material interaction, but also psychology and belief, and ultimately social values of good and bad. 

What it seems that Spinoza was most concerned with in his assessment of a physics is the kinds of concrete reactions which ground our selective ability to usefully distinguish one thing from another, a usefulness that ever trades on the community of rational explanations with share with others. The result of this physics is an ultimate ground upon which we can and do build our own mutual body of social wholes, our own physics of decisions and distinctions. Physics both ground and distinguish us for Spinoza, always suggesting an anatomy of joined, contiguous parts; it is an anatomy that guides the effortless butcher’s knife that ideally, knowingly, seldom would need sharpening.

An origin of Spinoza’s “cones of rays” explanation, Letter 40

[addendum: in addition to these thoughts, the influence of a more recent source, James Gregory’s Optica Promota (1663) has to be considered]

Kepler and How Spinoza Viewed the Eye and Light

As a point of reference it is important to locate the origin of Spinoza’s phrase “cones of rays” found in his letter 40, since implicit in this phrase is likely the conception of light and refraction which would help us make sense of his objection to Descartes. This phrase has a history of what seems a bit of interpretive confusion, for instance, that expressed by Alan Gabbey in his Cambridge Companion to Spinoza article, “Spinoza’s Natural Science and Methodology”. Here professor Gabbey quotes the phrase as if it embodies the locus of Spinoza’s befuddlement:

Spinoza explained that light rays from a relatively distant object are in fact only approximently parallel, since they arrive as “cones of rays” from different points on the object. Yet he maintains the same property of the circle in the case of ray cones, apparently unaware of the importance of the “[other] figures” [the famous “Ovals of Descartes”] that Descartes had constructed in Book 2 of La Géométrie to provide a general solution to the problem of spherical aberration [Ep 40].

I have already pointed out that Spinoza indeed was not “unaware” of the “importance” of Descartes’ figures (since he was intimate with the debate over that importance), and that part of Gabbey’s difficulty may stem from a weakness in translation, or not taking into account Spinoza’s familiarity with Hudde’s Specilla circularia: here. Spinoza, all the same, is constructing an argument that seems to shift parameters. In Letter 39 he speaks of the capacity of spherical lenses to focus parallel rays to an (approximate) point of focus opposite, along an infinity of axes, and now he tells Jelles that this capacity is to be understood not for parallel rays, but for “cones of rays”, which is more accurate to what is actually occurring. Where does Spinoza get his conception of “cones of rays”?

I believe it is found in Kepler’s Paralipomena to  Witelo (1604), a work I am beginning to suspect holds some of Spinoza’s resistance to Descartes. Descartes called Kepler his “first teacher” in optics, so when there is a divergence between the two, Kepler and Descartes, one may perhaps look to Kepler as a source for other resistance to Descartes’ conclusions. (It is a mistake to assume that solely in terms of temporal advancement, all of Descartes deviations from Kepler are corrections, for in some ways Kepler held views antecedent to our better conceptions on the nature of light.) In letters 39 and 40 Spinoza is critiquing Descartes explanation of how image size is produced in telescopes, and he finds in Descartes’ explanation some delinquencies which give undue favor to the hyperbola. Where Spinoza likely draws his conception of “cones of rays” is where Kepler is discussing the manner in which images are formed in the human eye:

Now in order to approach closer to the way this picturing happens, and to prepare myself gradually for the demonstration, I say that this picturing consists of as many pairs of cones as there are points in an object seen, the pairs always being on the same base, the breadth of the crystalline humor, or making use of a small part of it, so that one of the cones is set up with its vertex at the point seen and its base at the crystalline (though it is altered somewhat by refraction in entering the cornea), the other, with the base at the crystalline, common with the former, the vertex at some point of the picture, reaches to the surface of the retina, this too undergoing refraction in departing from the crystalline. And all the outside cones come together at the opening of the uvea [pupil], at which space the intersection of the cones takes place, and right becomes left..

…[now speaking of a single cone of those cones of rays] Thus those rays which previously were spreading out in their progress through the air, are gathered together now that they have encountered in to the cornea, so much so that any great circle described by those rays upon the cornea, which in their decent touch the edges of the opening is wider than the circle of the opening of the uvea; however, these rays, all the way to the opening of the uvea, are so strongly gathered together through such a small depth of the aqueous humor, that now the edges of that opening are trimmed of by the extremes, and by that decent they have made illuminous a portion on the surface of the crystalline humor, if indeed they all have first arisen at a point at a certain and proportionate distance (which is pecular to each eye, and not just the same for all), they fall approximately perpendicularly, because of the similar convexity of the cornea and the crystalline humor. (trans. Donahoe, 170)  

Included in this reference is also the obvious fact that for an object to be seen, light from all its points must be gathered. It is part of Kepler’s picture:

Spinoza writes: “…in order to see an entire object, we need not only rays coming from a single point but also all the other rays that come from all the other points. And therefore it is also necessary that, on passing through the glass, they should come together in as many other foci.”

Because Spinoza is arguing that the hyperbolic lens – designed to receive rays solely parallel to its one axis – is insufficient for the variety of angles at which light arrives, the question of parallel or coned rays does not seem germane to his argument. His emphasis in the original description seems meant to be in terms of axes, assuming a “mechanical point” of focus definition. (Whether it is ultimately germane to contemporary telescope construction is another question.)

It must be noted, though here is both a most significant implication of the cone of light having a spherical (wave?)front, something ungrasped by Descartes but captured later by Huygens, in the text that follows as Kepler closely describes this action of cones of rays in the eye, he emphasizes the “hyperbolic posterior surface of the crystalline” (171), possibly disturbing the cohesion of Spinoza’s purely spherical ideal of light refraction. If indeed Spinoza is taking Kepler’s description as his source, this gives us to consider how Spinoza might mean the inexactness of the construction of the eye (letter 40). In what way can the eye be considered imperfect, and is there a Kepler source for this notion?

Spinoza writes: “And although the eye is not so exactly constructed that all the rays coming from different points of an object come together in just so many foci at the back of the eye, yet it is certain that the figures that can bring this about are to be preferred above all others.”

There is an antecedent to this in Keplers’ description of the action of rays as they come from cones at angles oblique to the axis of the cornea:

All the lines of the direct cone [a cone whose axis is the same as the axis of the cornea and crystalline] are approximately perpendicular to the crystalline, none of those of the oblique cones are, The direct cone is cut equally by the anterior surface of the crystalline; the oblique cones are cut very unequally, because where the anterior surface of the crystalline is more inclined [aspherical], it cuts the oblique cone more deeply. The direct cone cuts the hyberbolic surface of the crystalline, or the boss, circularly and equally; the oblique cone cuts its unequally. All the rays of the direct cone are gathered together at one point in the retina, which is the chief thing in the process; the lines of the oblique cones cannot quite be gathered together, because of the causes previously mentioned here, as a result, the picture is more confused. The direct cone aims the middle ray at center of the retina; the oblique cones aim the rays to the side

…so the sides of the retina use their measure of sense not for its own sake, but whatever they can do they carry over to the perfection of the direct vision. That is we see an object perfectly when at last we perceive it with all the surroundings of the hemisphere. On this account, oblique vision is least satisfying to the soul, but only invites one to turn the eyes thither so that they may be seen directly (174). 

Here Kepler seems to be making the exact same point as Spinoza, with an additional hint towards the necessity of the oblique in Spinoza’s concern. The construction of the eye, in so far as its lenses are aspherical, it is retarded its capacity to handle the focus of cones of rays oblique to its single axis. This first calls our attention to the limits of human vision (in individuals and in plan), and then suggests that Spinoza’s point is one of practical application in terms of lenses: that in aiding human vision and constructing telescopes, the symmetry of spherical lenses is preferred for magnification, handling a greater variety of angles of incidence through its infinity of axes.

This does not of course establish the veracity of Spinoza’s argument, but in locating a likely origin for Spinoza’s conception, we at least place Spinoza’s argument within the context of a larger view, to be weighed with all other anti-hyperbolic (Cartesian) positions  of his day (Hudde, Huygens). As I have said, it is my sense that Spinoza derives more than this from Kepler’s account of light. More posts to follow.

Spinoza’s Blunder and the Spherical Lens

Did Spinoza Understand the Law of Refraction?

 

In seeking to uncover the nature of Spinoza’s lens-grinding practices, and the competence of his optical knowledge, I believe I may have uncovered another small, but perhaps significant mis-translation of the text. The text is letter 39, written to Jelles (March 1667)), wherein Spinoza explains the insufficiency of Descartes treatment of the cause by which objects appear smaller or larger on the back of the eye. Spinoza points out that in La dioptrique Descartes fails to consider the angle of incidence of the rays at the surface of the lens, and only considers “the crossing of the rays proceeding from different points of the object” at various distances from the eye. I believe that there are subtle epistemological issues that come with this point, and which Spinoza has in mind, but for now it is best to pay attention to what follows this complaint.

Spinoza suspects that Descartes has fallen intentionally silent on this factor, in part because Descartes has it within his plan to promote the importance of the hyperbolic lens, a reported improvement upon spherical lenses. Hyperbolic lenses, which Descartes championed and tried at great length to produce in an automated way, by the time of Spinoza’s writing had proven to be impossible to manufacture. Yet here Spinoza objects to them at the geometrical level. Spinoza argues that their means of collecting light rays, due to their aspherical nature, was less proficient than that of spherical lenses. I shall have to leave this immediate comparison of lens shapes aside, as well, to narrow our attention to a reported blunder Spinoza makes in his explanation, a blunder that has lead some to conclude that Spinoza really could not have had much comprehension of theoretical optics at all. He might have known how to make lenses, but was unclear as to how they worked. The charge is that he didn’t even understand the law of refraction: the principle relation between the angle of incidence and the refractive properties of a lens medium, derived by Descartes to explain the main insufficiency of spherical lenses: spherical aberration. 

Spinoza draws a diagram to help explain to Jelles just what the advantages of spherical lenses are. It depicts what Spinoza regards as a natural product of its symmetry, the capacity to focus rays that are parallel along its infinite number of axes, across its diameter, to a point opposite:

This is how Spinoza describes the relation, as translated by Shirley, (a wonderful translator):

For the circle, being everywhere the same, has everywhere the same properties. For example, the circle ABCD has the property that all the rays coming from the direction A and parallel to the axis AB are refracted at its surface in such a manner that they all thereafter come together at point B. Likewise, all the rays coming from the direction C and parallel to the axis CD are refracted at the surface in such a way that they all come together at point D. This can be said of no other figure, although hyperbolae and ellipses have infinite diameters

Now this description has lead notable, modern critics to conclude that Spinoza seems to have failed to understand the Law of refraction altogether, for in seeking to raise the value of the figure of the circle Spinoza has attributed properties to it that appear to ignore just that law. Principle here is the apparent, unqualified claim, “the circle ABCD has the property that all [parallel] rays coming from direction A…are refracted [at] point B”:

This is how Alan Gabbey articulates the failure on Spinoza’s part, and the reasonable conclusion to be drawn from it:

One’s immediate suspicions of error is readily confirmed by a straightforward application of Descartes Law of refraction. For the circle to have to the dioptrical property Spinoza claims, the refractive index of the glass would have to be a function of the angle of incidence [Gabbey secures his point with a footnote of the formula], a condition of which there is not the slightest hint in the letter. In his next letter [March 25, 1667] to Jelles, who asked for clarification, Spinoza explained that light rays from a relatively distant object are in fact only approximently parallel, since they arrive as “cones of rays” from different points on the object. Yet he maintains the same property of the circle in the case of ray cones, apparently unaware of the importance of the “[other] figures” [the famous “Ovals of Descartes”] that Descartes had constructed in Book 2 of La Géométrie to provide a general solution to the problem of spherical aberration [Ep 40]. I suggest on these grounds alone that though Spinoza may well have written a treatise on the rainbow [which he allegedly burned shortly before his death: Spinoza 1985b: 8], it is very unlikely that he wrote Stelkonstige Reekening van den Regenboog (“Spinoza’s Natural Science and Methodology” in The Cambridge Companion to Spinoza, 154)

For me what is at issue is not Gabbey’s concern as to whether Spinoza wrote the particular treatise on rainbows or not; it is the general appraisal of Spinoza’s aptitude in the theoretical optics of his day. Just what did Spinoza understand? Gabbey’s point rests on the slender idea that Spinoza does not seem to be able to even conduct “a straightforward application of Descartes’ Law of refraction”.

The problem arises I think from a slight neglect in the translation, the loss of the word “if”. I do not know what translation Gabbey was using, but if he was working from the Latin I believe he made a similar mistake. This is the Latin taken from his Opera:

Nam quia circulus idem ubique est, easdem ubique proprietates habet. Si, exempli causa, circulus A B C D hanc possideat proprietatem, ut radii omnes, axi A B paralleli, a parte A venientes, ad eum modum in ejus superficie refringantur, ut postea omnes simul in puncto B coeant; omnes quoque radii, axi C D paralleli, a parte C venientes, ita in superficie refringentur, ut simul in puncto D conveniant; id quod de nulla alia figura affirmare licet, licet Hyperbolae ac Ellipses infinitas habent diametros (the conditionals emphasized)

Key is to note that Spinoza has shifted into a hypothetical subjunctive. It is not as Shirley translates: “For example, the circle ABCD has the property that…” (though Shirley’s translation does not wholly obscure my point). The line reads “If, for example, circle ABCD should have the property that…”. It is not an assertion. This small difference has lasting effects on the nature of the point that Spinoza is trying to make. He is not attempting to say that circle ABCD, and therefore all circles, has the general property that ALL rays that are parallel to ANY of its axes, would be refracted to a point opposite. This would be absurd, and as a lens-maker and user he would know this. He is saying that given that this particular circle, as it represents a lens, can be said to have this property that all rays [all rays so depicted] come from direction A and do refract to a point opposite B, then another set of rays, at the same angle of incidence to a different axis would be refracted to another point in just the same manner [C to D].

Thus, what Gabbey mistakes as a general definition of the capacities of a spherical lens, ANY spherical lens, is actually for Spinoza a description that has two levels of comprehension. The first level is manifest and actual, the second is abstract and geometrical. At the manifest level circle ABCD is understood to be a description of a hypothetical, though real lens, with specific properties and focal points (here the Law of refraction is simply assumed); at the second level, given the acceptance of the first level, there a general property of ALL spherical lenses due to their geometry. This property is: if the index of refraction allows the focusing of a set of rays at a range of angles of incidence to a particular axis (as drawn), so that they meet at one point, the same will be said of other such axes of the arc. The loss of the hypothetical “If” in translation makes it appear that Spinoza is making a much broader claim about sphericals which simply ignores the Law of refraction. He is not.

Here is the text in a translation more sensitive to the conditional (wording suggested by S. Nadler):

For because a circle is everywhere the same, it has the same properties everywhere. If, for example, circle ABCD should have the property that all rays coming from direction A and parallel to axis AB are refracted at its surface in such a way that they thereafter all meet at point B; and also all rays coming from point C and parallel to axis CD are refracted at its surface so that they all meet together at point D, this is something that could be affirmed of no other figure, although the hyperbola and the ellipse have infinite diameters.

The construction of his thought is: “if this can be said of this particular figure, it can be said of no other figure, hyperbola and ellipse included”. We can see that part of the problem of translation lies with the very condensed way in which Spinoza is employing the subjunctive. His hypothetical has two levels of comprehension. To repeat, the figure ABCD is being treated as a real world manifestation, and so has particular properties such as the limitations granted to it by its index of refraction as being made of glass, but also it is taken to be an illustration of an abstract property of spherical shapes in general. It is both general and particular, and, as such, it is quite easy to miss both aspects, as Alan Gabbey and others seem to have done.

To really make clear Spinoza’s point, as he sees it, one just has to overlay his circle with the figure of a hyperbolic, and assume, as Spinoza does, that both sets of parallel rays (A and C) would be refracted to a single point (B and D). The hyperbolic lens simply would not have the same property:

 

There are several issues at stake here, some of them optical, some epistemological, some pragmatic, most of which must be left aside for the moment. It is my purpose to expose that Spinoza is making a point about the capacities of spherical lenses. We are to understand, under his proposed description, that these are lenses that are capable of focusing rays at a mutuality of angles of incidence by virtue of the geometrical properties of their class.

Although a surface reading of Spinoza’s diagram and description seems to present an elementary blunder, and may lead to the conclusion that he did not even understand how the Law of refraction was to be applied, a closer reading shows, at the very least, that he was intimately aware of Descartes’ law, and how Descartes attempted to solve the problem of spherical aberration. Key to understanding Spinoza’s approach was that he considered spherical aberration itself to be incidental to the limitations of lens use. Most likely he thought of lenses as devices, and the slight blurring at the edges of focus to be endemic to them. In this he followed closely his friend in correspondence, mathematician Johannes Hudde, who in his now lost treatise, Specilla circularia, argued just this conclusion. Instead of accepting Descartes’ attempt to define a mathematical point of focus, and construct a lens to achieve it, Hudde claimed that the point of focus of a lens is what he called a “mechanical point”. And it is precisely this “mechanical point” notion of focus that Spinoza has in mind when he speaks of rays meeting up at points B or D in his figure, (he uses the phrase in the following letter of clarification to Jelles, letter 40). Spinoza may have been on the wrong side of the argument, but to decide that he was unfamiliar with the argument itself in a fundamental way would be incorrect.

There is an additional piece of evidence of Spinoza’s theoretical familiarity with the application of the Law of refraction. We have the historical fact that he was in conversation and likely visitation with Christiaan Huygens in the summer of 1665, just as Huygens was working out his solution to spherical aberration using solely spherical lenses in composite. Huygens was bent on solving the aberration problem in a non-Cartesian way, as he meant to publish in his Dioptrics. In letter 30A to Oldenburg, as Spinoza responds to the Royal Society secretary’s urgings for an update on Huygens’s progress, despite Spinoza’s love of the spherical lens he expresses his doubts that Huygens would solve the problem that Descartes thought he had solved with hyperbolics:

The problem which he says he is trying to solve in Dioptics is as follows: Is it possible to arrange the lenses in telescopes in such a way that the deficiency in one will correct the deficiency in the other, and thus bring it about that all parallel rays passing through the objective lens will reach the eye as if they converge on a mathematical point? As yet this seems to me impossible. Further, throughout his Dioptrics, as I have both seen and gathered from him (unless I am mistaken), he treats only spherical figures. (quoted on October 7, 1665).

By the time that Oldenburg had read this Huygens indeed had solved much of problem of spherical aberration using two spherical lenses. (He would improve upon his solution later.) While it is likely Spinoza did not know of Huygens’s success – as he kept his discoveries close to the vest – Spinoza most certainly had discussed with Huygens, and seemingly read in the draft of the Dioptrics itself, the theoretical nature of the pursuit. He likely understood the issue that was at hand, most particularly the failure of Descartes to provide a practical solution to the problem of aberration, and how the Law of refraction itself might be used to overcome this aberration. It is noteworthy that Spinoza denies the possibility of Huygens’s aim in the context of his working solely spherical figures.

Given these factors of a theoretical correspondence with Hudde, the reading of Hudde’s treatise, and also Spinoza’s personal exchange with Huygens, the closer translation of letter 39 attests to a proficiency of optical knowledge far greater than what Alan Gabbey allows. Spinoza did seem to be more than familiar with the “importance” of Descartes figures, in particular, with the disappointments of that importance, at least as far as they were understood in his day. Central though to the issue of the “if” and the subjunctives that follow, is that the conditional itself assumes Spinoza’s own “mechanical point” (Hudde) notion of the focus of a lens. When Spinoza says, if circle ABCD has the property that certain parallel rays would meet at point B, he means at “mechanical point” B. Granting that they meet at such a mechanical point, other such rays must meet in a similar fashion at other points, as due to the nature of a circle, and this could not be said of Descartes’ other figures.

[For a Full Treatment of Spinoza’s Letters 39 and 40: Deciphering Spinoza’s Optical Letters ]