Frames /sing

kvond

To Understand Spinoza’s Letter 32 to Oldenburg

It is November of 1665, and Spinoza has just that summer likely spent much time in communication and possible visitation with the esteemed Christiaan Huygens, whose estate is a mere 5 minutes walk from where he lives. The two of them are ensconced in the quiet village of Voorburg, but it was a summer in which plague was ravaging London at a rate of nearly 6000 a week, and the secretary of the Royal Society of England, Oldenburg, has begged Spinoza for an update on the discoveries and devices of Huygens, as if upon such innovations the figurative health of society depends.

Spinoza responds with some telling remarks, upon which I have already registered some thoughts: Spinoza’s Comments on Huygens’s Progress. Here though, I want to post some relevant illustrations from Huygens’s notebooks, which make much more clear just what Spinoza may find objection to in Huygens’s fabrica. What Spinoza writes is this:

The said Huygens has been a totally occupied man, and so he is, with polishing glass dioptrics; to that end a workshop he has outfitted, and in it he is able to “turn” pans – as is said, it’s certainly polished – what tho’ thusly he will have accomplished I don’t know, nor, to admit a truth, strongly do I desire to know. For me, as is said, experience has taught that with spherical pans, being polished by a free hand is safer and better than any machine.

(This was the summer that Huygens will have solved the issue of spherical aberration using a solely combination of spherical lenses. But Spinoza does not know this.) We can assume that Spinoza has seen the machine that Huygens is fast at using. In order to see with Spinoza what this machine likely entailed, one must turn to several illustrations. Since the 1650s Huygens had experimented with (and likely used) an assisted means of steadying the glass blank against the spinning metal grinding form. The nature of this technical strategy was a long “bâton” which would restrict the kinds of movements the blank was capable of:

This is a detail of the device, followed by the wide view:

Oeuvres Complètes, XVII (p.300)

Oeuvres Complètes, XVII (p.299)

As one might see, the glass blank can toggle to a degree. This is what professor Graham Burnett writes of it in his Descartes and the Hyperbolic Quest: Lens Making Machines and Their Significance in the Seventeenth Century:

In the late 1650s, [Huygens] outlined the improved “bâton” technique for handling the lens in the forming pan [above illustrations cited]. Previously, the lens blank had been afixed by means of pitch or rosin to a short wooden or stone handle called a mollette. This short handle and wide distribution could lead to a rocking of the blank as it guided over the form, resulting in distortions of shape. Huygens’s improvement made use of an iron pin which acted as a bearing in the center of a piece of wood sitting over the glass. The pin was affixed to a wooden shaft that was suspended from above. This arrangement did not necessitate the use of pitch to attach the lens, and thus avoided fouling the abrasive with fragments of rosin. The technique must have worked well, because Huygens referred to using it into the early 1660s and even dedicated to it several pages in his extensive De Vitris Figurandis…representing work done in the 1670s and 1680s (97 – 98 )

Whatever the fabrica that Spinoza saw and commented on, it most surely employed something of the bâton mechanism. And it is likely that it is at least in part this that Spinoza is commenting on when he says: “experience has taught that with spherical pans, being polished by a free hand is safer and better than any machine”. But the automated potential of Huygens’s machine exceeds this semi-assisted mechanism, for there is a long history of Huygens’s conceptual experimentation with a fully automated device which would both hold the glass blank, but also turn and grind it. In these the glass blank and the forming pan apparently spun against each other in opposing directions. Here are several of these prospective machines:

Oeuvres Complètes, XVII (p.303)

 Oeuvres Complètes, XVII (p.304)

As Graham Burnett describes:

They are gear- and belt- driven, imparting both rotary and epicyclic motion to the glass blank, and they are all represented as self-contained boxes out of which lenses would emerge more or less by the turn of the crank. In fact in [the figure from page 303 of OC], it appears that the crank itself was forgotten and had to be added as an afterthought - a pentimento that speaks volumes concerning the preoccupation with excessive of the process (98 )

Burnett’s global point, if I read him right, is that Huygens’ plans for a completely mechanized production of mathematically exact lenses, purged from the human errors of the craftsman, is in the heritage of Descartes own, highly unrealistic schemata for a hyperbolic lens-grinding machine, symptomatic perhaps of a tendency to divorce body from mind. Burnett is quick to point out that Huygens, unlike Descartes, had extensive experience both in grinding lenses, and using them for discovery (for instance his discovery of the moon and rings of Saturn in 1656 is epic), yet the overall point of this tendency in conception holds. And likely it is to this that Spinoza is in some degree responding.

To better conceive of the contrast between whatever state the Huygens machine may have exhibited (in this spectrum of automatizations), and the simple lathe Spinoza may have employed, a juxtaposition of one of Huygens’s drawings a reproduction of a possible Spinoza lathe will serve:

 

 Oeuvres Complètes, XVII (p.302)

From the Middelburg 400th Anniversary of the Telescope Exhibit, design from Manzini’s “L’occhiale all’occhio, dioptrica pratica”  (1660), circa 1614.

From Manzini

One can immediately see the kind of condensed block mechanism that Huygens would like to have built, and to some degree had built, and the kind of traditional lathe that Spinoza may have used. In fact I have come to strongly suspect that in addition to the simple hand driven lathe depicted above, he likely also used a spring-pole lathe (such as the one in the Rijnsburg museum [here], though this museum piece is not of the period, nor a lens grinding lathe), most likely of the kind Hevelius used (pictured below) the hypothesis discussed here:

Spinoza’s lathe emphasized personal skill, the sensitive hand-eye-machine interface that drew not only on experience and a patient, attentive eye, but also on the particular passed on abrasive recipes and techniques of individual masters. Huygens’s ambition, as was Descartes’ was to transcend the event of crafting, mathematically. That is, with a mathematics that was embodied by the mechanism itself he hoped to simply machine the accuracy. Spinoza’s doubts to whatever fabrica he saw at the Huygens Estate were doubts about removing the “free hand” from the technology. And there is something to this that goes beyond whether this machine or that is at any one moment in history the better machine.

Speculatively: What Spinoza has in mind with the “free hand” is that the human element must be included in any epistemological assemblage. He would no more refuse the mechanized advances in contemporary technology than he would refuse more and more adequate ideas, but he would still look for the “free hand”, the touching point that circulates that knowledge back down to the user, and other men. Technical knowledge still must be human knowledge. The causes of things related to the causes of men. This is what I believe he meant by the fourth stimulation of the “means necessary to attain our end” in the Emendation of the Intellect:

4. To compare this result [the extent to which things can and cannot be acted upon] with the nature and power of man.

There is no doubt that Huygens was on the right track. His mentality was to lead him to a wave theory of light to complement Newton’s spectrum discoveries of the same. In fact, Huygens’s scientific discoveries and inventions are prodigious for the age, but it is good to note that Spinoza in the year of 1665 was fairly close to Huygens, and in many ways Spinoza’s optical and practical knowledge circulated with that of Huygens. That latter would affirm as late as 1668 that Spinoza was in fact right all along about the superiority of small objectives in microscopes, and had marveled at the lens polish that Spinoza was able to achieve through rather craftsman-like means. In reading the objection that Spinoza makes to Huygens’ machine one should understand it at two levels. The first is simply the pragmatic matter of an experienced craftsman who is not intoxicated by technical marvels in their own right. The turning of shiny gears does not make his heart sing. Taking his hand off the lens seems to him one of the last things one would want to do, and it would take a striking result to convince him otherwise, a result which Huygens would not be able to provide. The second level is as vast as the first is earthbound. Spinoza’s notion is that no matter how intricate the device (or the mathematical figure), the meaning of its products, the degrees to which their ideas set us free or not, must relate back to the human being itself, as it finds itself in history. In a sense, Spinoza is looking microscopically beneath, and macroscopically beyond Huygens’s improvements in his letter 32, as a craftsman and a metaphysican.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 55 other followers

%d bloggers like this: